October 15, 2024
PET

PEG 200 DIOLEATE

PEG 200 DIOLEATE

PEG 200 DIOLEATE

PEG 200 Dioleate = Polyethylene glycol dioleate = PEG DIOLEATE = Polyethylene Glycol (200) Dioleate = ESTER

EC / List no.: 618-407-2
CAS no.: 9005-07-6

PEG 200 DIOLEATE = Polyethylene Glycol 200 DIOLEATE
PEG esters
Polyethyleneglycol 200 Fatty Acid Ester Surfactants = polyethylene glycol dioleate = PEG DIOLEATE = Polyethyleneglycol di oleate = POLYOXYETHYLENE DIOLEATE

Esterification product of oleic acid with polyethylene glycol 200. 
PEG 200 di oleate finds application as an emulsifier, emollient and lubricant.

HOW IS PEG 200 DIOOLEATE PRODUCED ?
The process of combining an organic acid (RCOOH) with an alcohol (ROH) to form an ester (RCOOR) and water is called esterification. 
This chemical reaction results in the formation of at least one ester product with formation of water as the by-product is termed esterification process.

PEG 200 dioleate

Other products of ATAMAN CHEMICALS :
PEG 300 dioleate
PEG 400 dioleate
PEG 600 dioleate

Polyethylene glycol 200 fatty acid diesters are used as emulsifiers in lubricants, softener, and defoamer formulations. 
These products are used in the agricultural, cosmetic, household speciality, leather, metalworking, and textile industries.

Categories
Markets and applications for PEG 200 Dioleate: 

Lubricants and metalworking fluids, base oils, additives / Metalworking fluids
Metallurgical industry / Metalworking
Textile industry
Function
Emulsifiers
Lubricants
Composition
Fatty acids esters
Segment
Surfactants / Non-ionic surfactants

Alternative names
Polyethylene Glycol (200) Dioleate

Composition

PEG 200 Ester surfactants are manufactured by reacting a polyethylene glycol 200 with a fatty acid. 
The polyethylene glycol 200 comprises the hydrophilic part of the surfactant and the fatty acid the lipophilic part. 
By varying the molecular weight of the PEG and the fatty acid, surfactants covering a wide range of HLB values can be produced. 
Typically, those with an HLB below 13 are oil soluble and water dispersible while those above are water soluble.

PRODUCT: PEG 200 dioleate =  A surface active agent used in industrial degreasers and in textiles as an emulsifier, lubricant, softener and scouring agent.

CAS no.: 9005-07-6

TYPICAL PRODUCT SPECIFICATIONS

PEG 200 dioleate is a PEG ester of oleic acid PEG oleate uses and applications include: Surfactant for oil spill dispersants; lubricant, antistat in textile spin finishes; emulsifier for metalworking fluids, PVC production; thickener for cosmetics, pigment preparations; emulsifier for pharmaceuticals, paints, emulsion polymerization; emulsifier, antifoam, antistat, lubricant for cosmetics, industrial applications

CLASS: Specialty Chemicals 

FUNCTIONS of PEG 200 di Oleates: Surfactant,  Emulsifier,  Acid,  Dispersant,  Metalworking Fluids,  Lubricant 

INDUSTRY: Cosmetic,  Industrial,  Pharmaceutical 

Properties

EMULSIFICATION : PEG 200 esters, particularly PEG oleates and stearates, are excellent emulsifiers, better than alcohol ethoxylates or nonyl phenol ethoxylates.

FOAMING: Low foaming tendency

WETTING/DISPERSING: Good wetting/dispersing properties

LOW TOXICITY: Widely used in cosmetics and toiletries

BIODEGRADABILITY: Readily biodegradable

LOW HAZARD: No hazard labelling required for transport or use.

STABILITY: Hydrolysed under hot alkaline conditions.

Applications of PEG 200 OLEATES:

The traditional application areas for PEG ester surfactants have mainly utilised their excellent water/oil emulsifying properties, e.g. as: 
Lubricants in textile processing 
Cutting oils and metalworking fluids 
Solvent cleaners and emulsifiable degreasers 
Emulsifiers for self-emulsifying herbicides, insecticides and fungicides 
Emulsifiers for cosmetic creams and toiletry emulsions 
Emulsifiers for polymer latex production

Other applications have utilised their wetting/dispersing properties, e.g. as: Pigment dispersants for both organic and inorganic pigments in aqueous and non-aqueous systems. 
Plasticizers/viscosity modifiers in mastics, adhesives, emulsion paints and PVC plastisols

Poly(oxy-1,2-ethanediyl), α-[(9Z)-1-oxo-9-octadecen-1-yl]-ω-[[(9Z)-1-oxo-9-octadecen-1-yl]oxy]-
POLYOXYETHYLENE DIOLEATE

IUPAC names
2-[(Z)-octadec-9-enoyl]oxyethyl (Z)-octadec-9-enoate
Dioleic acid PEG600 ester
PEG Dioleate
PEG-8 dioleate
POLY(ETHYLENE GLYCOL) DIOLEATE
Poly(ethylene glycol) dioleate
Poly(oxy-1,2-ethanediyl), .alpha.-(1-oxo-9-octadecenyl)- .omega.-[(1-oxo-9-octadecenyl)oxy]-, (Z,Z)-
Poly(oxy-1,2-ethanediyl), .alpha.-[(9Z)-1-oxo-9-octadecen-1-yl]-.omega.-[[(9Z)-1-oxo-9-octadecen-1-yl]oxy]-
Poly(oxy-1,2-ethanediyl), a-[(9Z)-1-oxo-9-octadecen-1-yl]-w-[[(9Z)-1-oxo-9-octadecen-1-yl]oxy]-
Poly(oxy-1,2-ethanediyl), α-[(9Z)-1-oxo-9-octadecen-1-yl]-ω-[[(9Z)-1-oxo-9-octadecen-1-yl]oxy]-
Poly(oxy-1,2-ethanediyl),.alpha.-[(9Z)-1-oxo-9-octadecen-1-yl]-.omega.-[(9Z)-1-oxo-9-octadecen-1-yl]oxy]-
Polyethylene glycol dioleate
POLYOXYETHYLENE DIOLEATE
Polyoxyethylene dioleate

Other names
PEG 400 dioleate
Poly(oxy-1,2-ethanediyl), .alpha.-(1-oxo-9-octadecenyl)-.omega.-[(1-oxo-9-octadecenyl)oxy]-, (Z,Z)-
Poly(oxy-1,2-ethanediyl), a-[(9Z)-1-oxo-9-octadecenyl]-w-[[(9Z)-1-oxo-9-octadecenyl]oxy]-
polyethylene glycol dioleate

PEG Esters as Alternatives to Nonylphenol Ethoxylates

The environmental effects associated with NPE’s are now well documented and their replacement by alternatives is being strongly encouraged.

It is considered that PEG oleate surfactants are a closer match to NPE’s with respect to solubility and emulsifying characteristics than are alcohol ethoxylate surfactants.

Fatty acid esters
Fatty acid esters are used in a wide range of industries for their lubricating properties, solvency and resistance to oxidation. 
They are becoming more popular due to their renewable content, as they are derived from sources such as vegetable oils and animal tallow. 
Fatty acids esters have low volatility compared with many traditional solvents, making them suitable as replacements for solvents in coatings, inks and pressroom cleaners, as well as in lubricants and metalworking fluids.

ATAMAN’s esters are made by the reaction of fatty acids with alcohols. 
The products’ properties are determined by the carbon chain lengths, degree of branching and degree of unsaturation of the components. 
The main building blocks used in ATAMAN ’s products are:

• Fatty acids

stearic acid
oleic acid
palmitic acid
lauric acid
sebacic acid
distilled coconut fatty acid
C8/C10 fatty acid

• Alcohols

2-ethylhexanol
pentaerythritol
monoethylene glycol
isotridecanol
propylene glycol

Inquiry